Improved Automatic Computation of Hessian Matrix Spectral Bounds

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Automatic Computation of Hessian Matrix Spectral Bounds

This paper presents a fast and powerful method for the computation of eigenvalue bounds for Hessian matrices ∇2φ(x) of nonlinear wice continuously differentiable functions φ : U ⊆ R → R on hyperrectangles B ⊂ U . The method is based on a recently proposed procedure [9] for an efficient computation of spectral bounds using extended codelists. Both that approach and the one presented here substan...

متن کامل

Efficient computation of spectral bounds for Hessian matrices on hyperrectangles for global optimization

We compare two established and a new method for the calculation of spectral bounds for Hessian matrices on hyperrectangles by applying them to a large collection of 1522 objective and constraint functions extracted from benchmark global optimization problems. Both the tightness of the spectral bounds and the computational effort of the three methods, which apply to C2 functions φ : R → R that c...

متن کامل

Improved Bounds Computation for Probabilistic

Probabilistic is a direct extension of the structured singular value from the worst-case robustness analysis to the probabilistic framework. Instead of searching for the maximum of a function in the computation, computing probabilistic involves approximating the level surface of the function in the parameter space, which is even more complex. In particular, providing a suuciently tight upper bo...

متن کامل

Positive invariance tests with efficient Hessian matrix eigenvalues bounds

We investigate two simple sufficient criteria for positive invariance of sets in the domain of n-dimensional nonlinear autonomous discrete time systems. These criteria are derived from the exact Taylor expansion with linear and quadratic remainder terms. By a simple example we demonstrate that systems exist for which positive invariance can be established with the second order criterion but not...

متن کامل

Efficient Hessian computation using sparse matrix derivatives in RAM notation.

This article proposes a new, more efficient method to compute the minus two log likelihood, its gradient, and the Hessian for structural equation models (SEMs) in reticular action model (RAM) notation. The method exploits the beneficial aspect of RAM notation that the matrix derivatives used in RAM are sparse. For an SEM with K variables, P parameters, and P' entries in the symmetrical or asymm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Scientific Computing

سال: 2016

ISSN: 1064-8275,1095-7197

DOI: 10.1137/15m1025773